Stem Cell Research News ($)
Stem Cell Business News ($)
The Stem Cell Trekker
Subscription Page
It's  

 

 

13th Edition Guide to Stem Cell Research Companies

Complete listing of global companies performing stem cell research... PLUS stem cell research suppliers AND for-profit cord blood banks! 214 companies in all ... Soon  available in a paperback edition.

Click for more information
Stem Cell Primer

27 pages ... PDF ... Everything you need to know about stem cells and stem cell science.

Only $5.00 (limited time offer)

Click here to order ...

How can I access archived ($) content? 

Start a subscription to Stem Cell Research News at the low individual annual rate to access ALL archived content on this Web site. All articles are posted for free access for seven days. Afterward, articles are archived and require a subscription. 

Click for more information

 
New Stem Cell-Based Model Of ALS May Facilitate Rapid Drug Screening
Wednesday, December 3, 2008 - Stem Cell Research News
GageFred.jpg
 Fred Gage
 

Astrocytes have proven to be  crucial for the survival and well-being of motor neurons, which control voluntary muscle movements.

            Paradoxically, defective astrocytes can lay waste to motor neurons and are the main suspects in the muscle-wasting disease amyotrophic lateral sclerosis (ALS), known also as Lou Gehrig’s disease.

            To get to the root of this complicated relationship, researchers from the Salk Institute for Biological Studies (La Jolla, Calif.) have established the first human embryonic stem cell (hESC)-based system for modeling ALS.

            Their study confirmed that dysfunctional human astrocytes turn against their charges and kill off healthy motor neurons.

            But more importantly, treating the cultured cells with apocynin, a powerful anti-oxidant, forestalled motor neuron death caused by malfunctioning astrocytes.

            The findings provide new insight into the toxic pathways that contribute to the demise of motor neurons in ALS and open up new possibilities for drug-screening experiments using human ALS in vitro models, as well as clinical interventions using astrocyte-based cell therapies.

            “A variety of drugs that had demonstrated significant efficacy in mouse models didn’t keep their promise in both preclinical and clinical trials,” said Fred H. Gage, Ph.D., a professor in the Laboratory for Genetics, who led the study.

            In fact, riluzole, the only drug approved by the FDA to treat ALS, only slows the  disease by two months.

            “There is an urgent need for new ALS models that have the potential to translate into clinical trials and that could, at a minimum, be used in conjunction with the murine models to verify drugs and drug targets,” Gage said.

            ALS, a usually fatal neurodegenerative disease that attacks motor neurons controlling voluntary movement, leads to progressive paralysis and muscle atrophy.

            Although ALS was first classified as a disease over 140 years ago, there are still few clues as to its cause.

            Scientists, however, have discovered that ALS can be induced by inherited mutations in the gene encoding the SOD1 enzyme, short for superoxide dismutase 1.

            This enzyme protects the body from damage caused by free radicals, highly reactive molecules produced by cells during normal metabolism.

            Spinal motor neurons express high levels of SOD1, which many originally thought might explain their selective vulnerability.

            But soon, mouse experiments revealed that motor neuron degeneration is not necessarily associated with the expression of defective SOD1 in the motor neurons per se but rather with its expression in a critical number of neighboring support cells.

            Because most treatments that worked in ALS mouse models didn’t live up to expectations in preclinical and clinical trials, postdoctoral researcher and first author M. Carol Marchetto, Ph.D., looked for an alternative.

            “Transgenic mice containing the human mutated forms of SOD1 have been very useful to study the disease onset and progression,” she said. “But we felt that cell culture models using both human neurons and astrocytes could potentially be very useful for drug screening and, to some extent, cell replacement therapies.”

            To uncover the contribution of astrocytes to human motor neuron degeneration, Marchetto first coaxed hESCs to differentiate into motor neurons through a series of physical manipulations and exposure to a number of growth factors.

            When she co-cultured these cells with human astrocytes expressing a mutated form of SOD1, the number of motor neurons alive in the Petri dish plummeted.

            “In the presence of the mutation, the astrocytes activated an inflammatory response and started producing reactive oxygen species, a hallmark of ALS,” Marchetto said.

            When she treated these cells with known antioxidants such as apocynin, which is found in many plants, epicatechin, one of the beneficial ingredients in green tea and chocolate, or alpha-lipoic acid, which is produced by the body, the percentage of astrocytes churning out harmful reactive oxygen species decreased significantly.

            Not only that, when she treated motor neurons cultured in the presence of mutant astrocytes, apocynin – the only antioxidant tested in a co-culture experiment – helped motor neurons withstand their unsupportive environment.

            “We believe that we can use this system as a rapid drug screening test for oxidative damage to identify the best candidates for subsequent long-term co-culture experiments,” Marchetto said.

            While research on the effects of the SOD1 gene mutation is providing important clues about the possible causes of motor neuron death, only a small fraction of all ALS cases are actually due to the mutation; other as yet unidentified genetic causes clearly exist.

            “The rapid advances in induced pluripotent stem cell technology will soon allow us to generate patient-specific stem cells that can be used in our co-culture assay to gain new insight into the different causes of ALS,” Gage said.

            The study appears in the December 4 issue of the journal Cell Stem Cell.

            This study was funded by Project ALS, the Dana and Christopher Reeve Foundation, the California Institute for Regenerative Medicine, the Lookout Fund, and the National Institutes of Health.

            Contact: Fred Gage, 858-453-4100 ext. 1012, gage@salk.edu


Scroll down to see related articles below. 
 



Related Articles :

E-mail this stem cell article to a friend - Print this stem cell article
Articles can be e-mailed to a friend or you can get a printable version of the article.

 
Search Stem Cell Articles :
Enter key word(s)

 
 
 

 



 
 



 

Copyright © 2003 -  2014 by DataTrends Publications, Inc. All rights reserved.