Stem Cell Research News ($)
Stem Cell Business News ($)
The Stem Cell Trekker
Subscription Page
It's  

 

 

13th Edition Guide to Stem Cell Research Companies

Complete listing of global companies performing stem cell research... PLUS stem cell research suppliers AND for-profit cord blood banks! 214 companies in all ... Soon  available in a paperback edition.

Click for more information
Stem Cell Primer

27 pages ... PDF ... Everything you need to know about stem cells and stem cell science.

Only $5.00 (limited time offer)

Click here to order ...

How can I access archived ($) content? 

Start a subscription to Stem Cell Research News at the low individual annual rate to access ALL archived content on this Web site. All articles are posted for free access for seven days. Afterward, articles are archived and require a subscription. 

Click for more information

 
Stem Cell Pastes Show Promise In Bone Repair
Tuesday, September 22, 2009 - By Amy Ryan, Stem Cell Research News
XuHuakun.jpg
 Huakun Xu
 

Surgeons could one day routinely use strong, moldable, and injectable pastes embedded with stem cells to regenerate needed bone tissue to repair broken bones, fractures, genetic defects, even combat bone wounds, according to scientists in Maryland.

A University of Maryland Dental School presentation at a stem cell conference showed that human stem cells seeded in a tissue engineering scaffolding exhibited “excellent attachment and osteogenic differentiation,” which is the process of laying down new bone material.

 
 Stem cells in paste connect to fibers
The researchers said the new findings buoy hopes that an injectable paste of stem cells will be available one day to fill any shape of cavity from bone defects, breaks or wounds by regenerating needed bone tissue.

In test tube studies, stem cells from bone marrow, when placed into an injectable scaffold of calcium phosphate and chitosan, started growing and forming minerals needed for new bone tissue.

According to Huakun Xu, Ph.D., an associate professor, and colleagues have tested four scaffolding materials for gripping and holding the stem cells.

“Which of the materials will be used in a commercial product really depends on where you want to place the material, whether in the jaw bone, the cranium or other bones,” said Michael Weir, PhD, a research assistant professor.

“Ultimately we want this to be an injectable paste so we can put it into voids that are not square, rectangular or circular, that they are irregular shapes that need to be filled,” Weir said. “The paste will include the cells.”

Xu added that such a product could also be used in periodontal bone repair, mandibular and maxillary ridge augmentation, reconstruction of frontal sinus and craniofacial skeletal defects, and other stress-bearing orthopedic applications.

After a tumor removal or traffic accident, there may be a need to repair the damage or void left.

It will beneficial, he said, to have a paste that can be shaped easily to achieve a high degree of aesthetics.

After shaping, the paste hardens to form a solid scaffold full of pores and channels and still containing stem cells throughout, still living and growing to form new bone.

Eventually the scaffold material degrades and is replaced entirely by new bone tissue grown from the stem cells.

The researchers found that a significant number of the cells were alive after a few weeks in the scaffolding material.

They then discovered that the cells were differentiating into osteoblasts, essentially turning into bone cells.

After staining the scaffold, the researchers found the osteoblasts forming “a lot” of the mineral, which then forms the bone after only 21 days, said Weir. In a subsequent experiment, the cells survived even better when mixed in a gel of the scaffolding material.

The researchers have recorded similar success with umbilical cord-derived stem cells, which “appear to be more potent in terms of growth and transforming into osteoblasts on the scaffold than the cells from bone marrow,” said Xu.

It is likely that the umbilical cord cells are more vital because they are younger than stem cells obtained from the adult bone marrow and in theory will act more quickly to repair wounds or bone defects.

“When a 16-year-old breaks a bone, it usually takes a few weeks to heal. In a 60-year-old, it likely takes a few months,” Xu said. “Umbilical cord stem cells are only 9 months old and hence are fast in healing.”

Xu said human umbilical cord stem cells have the promise to be a superior alternative to bone marrow-derived stem cells, the latter requiring an invasive procedure to harvest.

For combat medics, the umbilical cord derived stem cells could potentially be on the shelf and used in the field without causing immunuorejection, Xu said.

Xu said that after a literature search, he believes his laboratory is the first to investigate the seeding of umbilical cord-derived stem cells in injectable and load-bearing scaffolding for bone tissue engineering.

“We are excited about the promise of encapsulating umbilical cord stem cells in an injectable scaffold for stem cell delivery and bone regeneration.” Xu said. “Our research is still in an early stage. We will perform more systematic investigations and animal studies. If indeed human umbilical cord stem cells delivered using injectable scaffolds are more effective in bone regeneration than the commonly studied bone marrow stem cells, it will broadly impact the field of stem cell-based regenerative medicine.”

Xu, Weir, and Ryan Zhao, M.D., presented their findings at the World Stem Cell Summit at the Baltimore Convention Center.

Contact: Huakun Xu, 410-706-7047, hxu@umaryland.edu


Scroll down to see related articles below. 
 



Related Articles :

E-mail this stem cell article to a friend - Print this stem cell article
Articles can be e-mailed to a friend or you can get a printable version of the article.

 
Search Stem Cell Articles :
Enter key word(s)

 
 
 

 



 
 



 

Copyright © 2003 -  2014 by DataTrends Publications, Inc. All rights reserved.