Stem Cell Research News ($)
Stem Cell Business News ($)
The Stem Cell Trekker
Subscription Page
It's  

 

 

13th Edition Guide to Stem Cell Research Companies

Complete listing of global companies performing stem cell research... PLUS stem cell research suppliers AND for-profit cord blood banks! 214 companies in all ... Soon  available in a paperback edition.

Click for more information
Stem Cell Primer

27 pages ... PDF ... Everything you need to know about stem cells and stem cell science.

Only $5.00 (limited time offer)

Click here to order ...

How can I access archived ($) content? 

Start a subscription to Stem Cell Research News at the low individual annual rate to access ALL archived content on this Web site. All articles are posted for free access for seven days. Afterward, articles are archived and require a subscription. 

Click for more information

 
U-Cord And Menstrual Blood SCs May Offer Therapies For Neurological Disorders - ($)
Tuesday, March 08, 2011 - Stem Cell Research News
BrainImage.png
 

Stem cells derived from umbilical cord blood cells and menstrual blood cells may offer future therapeutic benefit for those suffering from stroke, Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS), according to a team of neuroscience researchers.

“Umbilical cord blood cells and stem cells derived from menstrual blood are relatively easy to obtain, appear to be able to differentiate into many kinds of cells, and are immunologically immature, offering them the potential to promote cell survival rather than play a cell replacement role when transplanted,” said Dr. Paul Sanberg, executive director of the Center of Excellence on Aging and Brain Repair at the University of South Florida.

According to Dr. Eduardo Cruz, CEO of Cell PRAXIS BioRio (Rio de Janeiro, Brazil), human umbilical cord blood cells (hUCBs) are limited to collection at the time of birth, but menstrual blood-derived stem cells (MenSCs) could be collected once a month for 40 years from women during their reproductive stage.

“Both hUCBs and MenSCs have been used successfully in laboratory experiments with animal models of diseases,” Cruz said.

MenSCs have been transplanted into animal models of stroke and have been shown to be able to differentiate into a number of neural cell types. Transplanting hUCBs into animal models of stroke, Alzheimer’s disease, and ALS has demonstrated their therapeutic potential for reducing inflammation, a key component of many neurodegenerative diseases.

Studies examining transplantation of MenSCs into laboratory cultures and animal models (in vitro and in vivo) of stroke have demonstrated a potential for protection against oxygen-glucose deprivation.

“Factors secreted by the transplanted cells were able to offer a neuroprotective effect,” said Dr. Cesar Borlongan, a professor in the Department of Neurosurgery and Brain Repair. “This may relate to the cells secreting vascular endothelial growth factors (VEGF), brain-derived growth factors (BDNF), and neurotrophin-3 (NT-3), all of which have potential benefits for the treatment of stroke.”

A decade of studies using animal models of stroke has found that in many cases hUCBs failed to enter the brain following transplantation, yet behavioral improvements were often observed, Borlongan said.

“These cells have anti-inflammatory properties and are pro-angiogenic, that is, they encourage cell growth and tissue repair,” he said.

Similarly, studies using animal models of Alzheimer’s disease have found that hUCBs also play an anti-inflammatory role.

According to Dr. Jun Tan, professor of psychiatry and Robert A. Silver chair at the Rashid Laboratory for Developmental Neurobiology, USF Silver Child Development Center, one of the major causes of AD is the deposition of amyloid beta (AB), a chemical that activates the immune response in a number of key brain cell types, and this leads to an inflammatory state.

“It is likely that hUCBs can modify this inflammatory response and provide beneficial effects in animal models of AD,” said Tan, who recently completed a study in which the brain-to-blood clearance of AB was demonstrated. Based on the findings of this research, Dr. Tan is developing clinical protocols with Saneron CCEL Therapeutics, Inc. and the USF Health Byrd Alzheimer’s Institute.

“Our immediate goal is to move our beneficial findings with cord blood cells into clinical trials for patients with mild to moderate Alzheimer’s disease,” said Dr. Tan.

This research is part of an ongoing research partnership between USF, Saneron CCEL Therapeutics, Inc., (Tampa, Fla.), Cell PRAXIS BioRio and Cryo-Cell International aimed at determining the therapeutic benefits hUCBs present for a variety of neurological diseases, including Parkinson’s disease, Lou Gehrig’s disease (ALS), Alzheimer’s disease, and stroke.

“Our next stage of research is translational, with the goal of bringing these advancements to the patient bedside,” said Nicole Kuzmin-Nichols, president and chief operating officer of Saneron.

When hUCB transplantation was studied in animal models of ALS, also a neurodegenerative disease with an inflammatory component, hUCB transplantation was shown to help regulate the inflammatory response by reducing the number of microglia - brain cells that initiate an inflammatory response. In this case, the benefits of injected hUCBs were dose-related.

“In contrast to when hUCBs were transplanted into animal models of stroke and AD, a considerable number of hUCBs were detected within the spinal cord in animal models of ALS,” said Dr. Svitlana Garbuzova-Davis, an assistant professor in the USF Department of Neurosurgery and Brain Repair. “A relatively high dose was necessary, however.”

Citation: “The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells;” Sanberg, P. R., et al.; Cell Transplantation, 20(1):85-94; 2011.

Abstract: Click here.

Contact: Paul Sanberg, psanberg@health.usf.edu

Contact (Cell PRAXIS Bioengenharia): http://www.cellpraxis.com/


Scroll down to see related articles below. 
 



Related Articles :

E-mail this stem cell article to a friend - Print this stem cell article
Articles can be e-mailed to a friend or you can get a printable version of the article.

 
Search Stem Cell Articles :
Enter key word(s)

 
 
 

 



 
 



 

Copyright © 2003 -  2014 by DataTrends Publications, Inc. All rights reserved.