Stem Cell Research News ($)
Stem Cell Business News ($)
The Stem Cell Trekker
Subscription Page
It's  

 

 

13th Edition Guide to Stem Cell Research Companies

Complete listing of global companies performing stem cell research... PLUS stem cell research suppliers AND for-profit cord blood banks! 214 companies in all ... Soon  available in a paperback edition.

Click for more information
Stem Cell Primer

27 pages ... PDF ... Everything you need to know about stem cells and stem cell science.

Only $5.00 (limited time offer)

Click here to order ...

How can I access archived ($) content? 

Start a subscription to Stem Cell Research News at the low individual annual rate to access ALL archived content on this Web site. All articles are posted for free access for seven days. Afterward, articles are archived and require a subscription. 

Click for more information

 
Researchers Describe How Neural Stem Cells Become Neurons And Glia - ($)
Thursday, November 07, 2013 - Stem Cell Research News - Basic Research
LuWange.jpg
 Wange Lu
 

          LOS ANGELES, Calif., October 24, 2013 – Researchers here explain in a new paper how neural stem and progenitor cells differentiate into neurons and related cells called glia.

Neurons transmit information through electrical and chemical signals; glia surround, support and protect neurons in the brain and throughout the nervous system.

Glia do everything from holding neurons in place to supplying them with nutrients and oxygen to protecting them from pathogens.

By studying early mouse embryo neural stem cells in a Petri dish, Lu and his colleagues at USC discovered that a protein called SMEK1 promotes the differentiation of neural stem and progenitor cells. At the same time, SMEK1 keeps these cells in check by suppressing their uncontrolled proliferation.

The researchers also determined that SMEK1 doesn’t act alone: it works in concert with Protein Phosphatase 4 to suppress the activity of a third protein called PAR3 that discourages neurogenesis, or the birth of new neurons. With PAR3 out of the picture, neural stem cells and progenitors are free to differentiate into new neurons and glia.

“These studies reveal the mechanisms of how the brain keeps the balance of stem cells and neurons when the brain is formed,” said Wange Lu, associate professor of biochemistry and molecular biology at USC. “If this process goes wrong, it leads to cancer, or mental retardation or other neurological diseases.”

Neural stem and progenitor cells offer tremendous promise as a future treatment for neurodegenerative disorders, and understanding their differentiation is the first step towards harnessing this therapeutic potential. This could offer new hope for patients with Alzheimer’s, Parkinson’s and many other currently incurable diseases.

Citation: “Protein Phosphatase 4 and Smek Complex Negatively Regulate Par3 and Promote Neuronal Differentiation of Neural Stem/Progenitor Cells”; Jungmook Lyusend et al.; Cell Reports, October 2013

Abstract: Click here.

Contact: Wange Lu, wangelu@usc.edu


Scroll down to see related articles below. 
 



Related Articles :

E-mail this stem cell article to a friend - Print this stem cell article
Articles can be e-mailed to a friend or you can get a printable version of the article.

 
Search Stem Cell Articles :
Enter key word(s)

 
 
 

 



 
 



 

Copyright © 2003 -  2014 by DataTrends Publications, Inc. All rights reserved.